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Abstract

This paper develops a statistical theory of the value of data in out-of-sample predic-
tion, modeling Bayesian linear regression with endogenous covariate choice. Returns to
the number of covariates may be increasing: the marginal value of one covariate may
rise when more covariates are observed. Covariates and observations are complements
when data is scarce but substitutes when abundant. Training and targeting data are al-
ways complements, so richer training data increases the value of targeting data. We show
that prediction entails sunk costs even in the absence of fixed costs, and firms should scale
both user acquisition and attribute collection initially, before eventually specializing. Pre-
diction may thus be a natural monopoly, making concentration more efficient than de-
centralization. Access regulation, such as federated learning or FRAND-priced APIs, may
restore competition, while privacy rules may inadvertently reinforce concentration. Data
broker mergers may be efficient or anticompetitive depending on the statistical relation-

ship among data products and data exclusivity agreements that deter entry.

JEL CrassiricaTion: C11, D83, L12, O33.
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1 Introduction

An important source of competitive advantage in digital markets is the ability to attract users

by making accurate predictions."! More users generate more data, which in turn improves
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predictions, creating a positive feedback loop between better predictions, more users and ever
larger datasets.” As former Google CEO Eric Schmidt noted: “Scale is the key. We just have
so much scale in terms of the data we can bring to bear”.?

Consequently, policymakers increasingly view the concentration of data in the hands of
a few firms as a potential source of barriers to entry.* In 2022, the EU’s Data Act proposal
warned that “market imbalances arising from the concentration of data restrict competition
and increase barriers to entry”.> In the United States, the 2021 House Report concluded that
“data advantages [...] can reinforce dominance and serve as a barrier to entry”.°

This paper develops a statistical theory of the value of data in prediction, characterizing
when data can exhibit increasing returns to scale, so combining datasets is more efficient
than keeping them separate. The framework distinguishes between the value of additional
observations (e.g., users) and additional covariates (e.g., attributes of those individuals), and
between learning covariates, used to train algorithms, and targeting covariates, used to apply
trained algorithms to predict outcomes (e.g., willingness to pay) for specific individuals.

In Section 2, I set up a data collection problem as a Bayesian linear regression with an en-
dogenous set of covariates.” In Section 3, I characterize the optimal predictor, which relies on
ridge regression estimates, a standard machine learning procedure.® Using this result, I then
derive closed-form expressions for the value of data, showing that the most valuable covariates
are those with the highest variance, and that returns depend on the distribution of the signal
across covariates. I then show that the optimal selection of covariates generates diminishing
returns to targeting covariates, analogous to Ricardo’s principle of diminishing returns to a
heterogeneous quality input. Section 4 develops three main results on the marginal returns.

Firstly, there can be increasing returns to learning covariates. Observing a new covariate
reduces prediction noise, and reductions in noise have an accelerating effect on the precision
of estimates. However, when few covariates account for a large fraction of the signal, the
Law of Large Numbers eventually dominates: once estimates are precise, further increases in
dataset size deliver only diminishing improvements. As a result, the returns to covariates often
follow an S-shape—increasing at first, then decreasing—though other patterns arise depending
on the distribution of the signal across covariates. In the special case where all covariates have

identical variance, the result is stark: returns to covariates are increasing.’

2On data-enabled learning, see Hagiu and Wright (2023) and Farboodi and Veldkamp (2025).

3See https://www.bloomberg.com/news/articles/2009-10-02/how-google-plans-to-stay-ahe
ad-in-search.

“In 2019, the Stigler Committee’s Final Report on Digital Platforms and the UK Competition and Markets
Authority’s Digital Competition Expert Panel Report argued that data concentration can be a barrier to entry.

See https://eur-lex.europa.eu/legal-content/EN/TXT/7uri=celex:52023PC0193.

®U.S. House of Representatives, Committee on the Judiciary, Subcommittee on Antitrust, Commercial and
Administrative Law (2020), “Investigation of Competition in Digital Markets,” Committee Print 117-40, at 36-38.
See the House Committee Print: https://www.congress.gov/committee-print/117th-congress/hous
e-committee-print/47832.

’1 generalize the classic model of DeGroot (2005), Ch. 10.

8Hoerl and Kennard (1970) provides a microfoundation for the ridge estimator using a Bayesian linear model.

?Carballa-Smichowski, Duch-Brown, et al. (2025) finds empirical evidence supporting S-shaped returns to
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Secondly, I analyze the interaction between covariates and observations. When data is
scarce, they are complements: measuring more covariates per observation makes each ad-
ditional observation more valuable. Once datasets become large, they become substitutes:
additional covariates reduce the marginal value of another observation.'

Finally, learning data and targeting covariates are complements. Richer learning data re-
duces estimation noise, which improves the firm’s knowledge of the effect of targeting co-
variates on the outcome, raising their value. These positive spillovers reinforce incentives to
acquire both types of data, creating complementarities between the two stages of prediction.

The framework yields several implications for policymakers, which I explore in Section 5.
Prediction can be a natural monopoly: dividing data across firms may reduce total surplus.
Moreover, by limiting data availability, privacy regulation can make natural monopoly out-
comes more likely, giving rise to a data policy trilemma: regulators can at most achieve two of
three objectives — privacy, competition, or efficiency. Policies that decentralize data may be
less effective at reconciling privacy and efficiency than ex ante access regulation, such as fed-
erated learning'? or Fair, Reasonable, and Non-Discriminatory (FRAND)-priced Application
Programming Interfaces (APIs) for learning data."

Moreover, I show that mergers between data brokers selling data appends (consisting of
different covariates on the same users) can generate efficiencies as the merged entity can
avoid double marginalization. By contrast, competition authorities should scrutinize mergers
between brokers selling data lists (consisting of the same covariates on different users) as they
increase prices.'

Finally, I show that it can be profitable for a data owner to sign exclusivity deals with a
firm engaged in data-driven learning, even when this reduces social surplus. The reason is
that exclusivity —such as OpenAlI’s 2024 agreement with Reddit">— deprives entrants of a key
complement to their proprietary data. Exclusivity deals lower entrants’ incentives to invest
in proprietary data collection and can render market entry unprofitable.

In Section 6, I explore the model’s implications for firms’ data collection strategies. Firms
must collect a minimum scale of data before prediction is profitable, so there are sunk costs. In

the early stages, firms should balance marketing (acquiring users) and product development or

adding covariates to a regression model used to make predictions with health data.

10Schaefer and Sapi (2023) finds empirical evidence suggesting covariates and observations are complements,
but does not distinguish between targeting and learning covariates.

"Baumol (1977) defines a natural monopoly as a situation in which one firm can supply the entire market
demand at a lower total cost than any combination of two or more firms.

12For a review of federated learning, see Kairouz et al. (2021).

BRegulation (EU) 2023/2854 of the European Parliament and of the Council of 13 December 2023 on harmo-
nized rules on fair access to and use of data (“Data Act”), esp. Chapter IV (Articles 30-34), which require that
compensation for data access be “fair, reasonable and non-discriminatory”.

4Gu, Madio, and Reggiani (2021) shows that mergers of brokers can be anticompetitive when their products
are substitutes.

15“Reddit and OpenAl Announce Partnership”, OpenAl Blog, May 16, 2024, https://openai.com/index/r
eddit-partnership/; see also A. Paul, “Reddit Strikes Al Content Deal With OpenAlI Ahead of IPO”, Reuters,
May 16, 2024.
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data engineering (collecting attributes) to exploit complementarities. However, once datasets
reach sufficient size: firms should specialize either in expanding the user base or enriching
attributes, depending on where marginal returns are highest.

Connecting data internally to build integrated user profiles is essential, since fragmented
datasets reduce predictive accuracy—particularly for firms with a large but not yet massive
user base. Firms with overlapping attributes but distinct users benefit from pooling observa-
tions through mergers or data-sharing agreements, reducing competitive pressure and making
it easier for them to monetize their combined datasets.

Moreover, firms should prioritize collecting attributes with the highest variation across
users, as these contribute most to predictive accuracy. Firms selling data must identify which
attributes are uniquely generated by their operations, since such data are hard for competitors

to replicate and can confer durable competitive advantage.

Related Literature. I contribute to the literature on the economics of data by developing
a novel methodology that is microfounded on statistics. There is a rich information design
literature on the value of data (Jones and Tonetti (2020), Bergemann, Bonatti, and Gan (2022),
Bergemann and Bonatti (2024), and Acemoglu et al. (2022)). While this literature values in-
formation through the choice of a probability distribution, I link the value of data directly
to the realization of a dataset. Methodologically, my work is related to Montiel Olea et al.
(2022), Iyer and Ke (2024), and Dasaratha, Ortner, and Zhu (2025), who analyze competition
between models with different covariates. In contrast, I jointly model covariates and obser-
vations, and distinguish learning from targeting data, which allows me to derive structural
non-convexities generating increasing returns and complementarities.

I also contribute to the broad literature on returns to scale in data. Whereas most models fix
covariates and study returns to observations as Bajari et al. (2019), my framework endogenizes
covariate collection. This extension rationalizes empirical findings on complementarities in
Schaefer and Sapi (2023) and economies of scope in Carballa-Smichowski, Duch-Brown, et
al. (2025). Schaefer (2025)develops a complementary frequentist approach and shows that
the distribution of covariates shapes returns to scale. Radner and Stiglitz (1984) attributes
increasing returns to information costs, while I show they can emerge independently of costs.

My work provides microfoundations for two strands of literature that take increasing re-
turns to data as assumptions: the IO literature on platforms and the macroeconomics liter-
ature on data. Prior work explains increasing returns through feedback between data and
demand (Hagiu and Wright (2023), Priifer and Schottmiiller (2021), Farboodi and Veldkamp
(2025), Aral, Brynjolfsson, and Wu (2008), and Cong, He, and Yu (2021)) or by assuming com-
plementarities across datasets Carballa-Smichowski, Lefouili, et al. (2025), De Corniere and
Taylor (2025), and Calzolari, Cheysson, and Rovatti (2025). I show instead how prediction ac-
curacy alone generates increasing returns due to the statistical structure of data, independent

of demand feedback.



Finally, I develop a simple framework to study scaling laws, shedding light on the phe-
nomenon of double descent, which explains why maximum likelihood-based algorithms gen-
eralize well even when overparametrized (Hastie et al. (2020), Nakkiran et al. (2021), and
Belkin et al. (2019)).

2 Model Setup

This section models a firm predicting a user’s outcome from covariates (user attributes). The

prediction proceeds in two stages:

+ Learning: using a sample of historical outcomes, the firm estimates the statistical rela-

tionship between the outcome variable and a subset of covariates.

+ Targeting: the firm then applies this estimated relationship to predict the outcome for

a new user, based on the covariates it observes for that user.

In both stages, the firm faces constraints on the number of covariates it can employ. Its ob-

jective is to maximize prediction accuracy subject to these dimensionality constraints.

2.1 Loss and Data Generating Process

A firm must predict a random outcome y € R for a target instance drawn from a population 7.

Given a prediction y € R, the loss is the squared-error
L(y,y) = (y = )"
For each instance i € T, the outcome is linear in a set J of covariates:

y=xp= ij‘ﬂj:

jedJ

where x' = (x});cy € R’ is the covariate row vector for instance i, and B = (,);cs € Rlis a

column vector of parameters common to all instances, where £ = |J]|.
Covariates Mutually independent across j € J and i.i.d. across instances i € I:
xj- ~ N(0,s)),

where s; > 0 is the variance of covariate j. In Appendix



Parameters Unknown, independent of x}, and mutually independent across j € J:'¢
B; ~ N(0,1).

Because f is independent of x' and the covariates are mutually independent, the normalization
implies
Var[y] = 1.

I fix three scalars: the scale of learning n > 0; the scope of learning ¢ € [0, |; the scope of
targeting t € [0, {].

2.2 Two Interpretations of the Scope of Data

The scope of data has two possible interpretations, depending on assumptions about which

covariates are observable and about the structure of the variance—covariance matrix.

Scope as Breadth of Data. Assume only ¢ < fcovariates are observed and that the variance-

covariance matrix is diagonal,
Y = diag(d; > - > A; > 0).

The firm faces constraints on the number of covariates it can observe in the learning and
targeting steps. The scope of learning, £, is the number of covariates observed at the learning
stage. The scope of targeting, ¢, is the number of covariates observed at the targeting stage.

This interpretation captures the breadth of data gathered about user attributes.

Scope as Model Complexity. Assume all £ covariates are observed instead, with no restric-
tion on X. The firm faces constraints on the number of covariates it can use in the learning
and targeting steps. The scope of learning, ¢, is the number of principal components the firm
can use in learning. The scope of targeting, ¢, is the number of principal components that can
be used in targeting. This interpretation captures the model complexity.

To reduce the dimensionality whilst extracting the maximum information in the con-
straints, Jolliffe (2002) shows that the optimal procedure is Principal Component Analysis

(PCA). Let the eigendecomposition of the variance/covariance matrix be
> = USU/, S = diag(s; > -+ > s; > 0), U orthonormal.
Define principal components z' = x'U. Then

z' ~ N(0,A), zj- are uncorrelated with variances s;.

1 Normalizing Var[f;] = 1 is WLOG, as any Var[f;] = 7* can be recovered by rescaling §; = 7°s;



Remark 1 (Application to Large Language Models (LLMs)). Although LLMs are trained with
cross-entropy loss, near a trained solution their behavior can be well approximated by a lin-
ear predictor under squared loss in a suitable linear transformation of the covariates (MacKay
(1992); Jacot, Gabriel, and Hongler (2018)). In this local view, our primitives map directly: the
scale of learning n corresponds to the amount of training information (e.g., the number of
training observations/tokens), the scope of learning ¢ captures the effective number of infor-
mative directions used at the learning stage, and the scope of targeting t captures the amount
of information observed at the targeting stage for specific instances. Under this mapping,
comparative statics in (n, ¢, t) align with empirical scaling laws for language models (Kaplan
et al. (2020)). Supplying richer information at prediction time corresponds to increasing ¢ via
retrieval-augmented inputs (P. Lewis et al. (2020)), with benefits contingent on relevance and

known long-context effects (Liu et al. (2023)).

Cumulative Signal. Under either interpretation, define the cumulative signal by eigen-
value mass:

s; > 0 is the signal strength of dimension j.

For any subset .J’ C 7, define the cumulative signal as

ST = Z Sjs

jed’

where S(@) = 0 and the assumption Var[y] = 1 implies S(.J) = 1.
In what follows, I will adopt the scope as data breadth interpretation for the main discus-

sion of results, while referring to the scope as model complexity interpretation when useful.

2.3 Data

Before predicting, the firm can observe a dataset and must choose which covariates to observe:
Definition 1. A choice of covariates is a tuple of covariate subsets (£,7) C J x J.

For any vector v € R and subset J’ C J, letv 7 = (v})jeg. Using this notation, a generic

choice of covariates (£, T) consists of

« A set of Learning Covariates L: for a learning sample {1, ...,n} C T of instances, the

firm observes outcomes and covariates in L. Their realization is the learning matrix:
MP = {0}, = (¥ Xe ). yeR. XeeR™,

+ A set of Targeting Covariates T : for the target instance, the firm observes covariates

in 7. Their realization is the target vector x; € R/,



I use the superscript (n) to indicate dependence on the sample size. When no confusion arises,
I drop it from the notation. Each choice (£, 7) induces a random variable (M., x7) whose

realization is a dataset of type (£, T):

Definition 2. For any choice of covariates (L, T ), a dataset of type (L, T ) is the tuple

D(EH)T = (M(n), xr) € D(ﬁfl)f = RMHLD o RITT

match h Rating y ‘ Xize ‘ Xyear ‘ Xt ‘ xh ‘
0 ? X | NA | %, | NA _— /
1 yl xslize x;ear NA xslun } arget ector: xP
2 y ’ XSZize x}%ear NA xszun \
N N N N
N y xsize xyear NA X, sun

> learning Data: Dy

/

Table 1: Example of Netflix dataset with target covariates T = {size, dist} and learning covari-
ates E = {size, year, sun}, where size denotes square meters, dist the distance to the nearest
supermarket, year the construction year, and sun the daily sunlight exposure.

2.4 Prediction Problem

Given a choice of covariates (£, T), the firm must choose how to map a generic dataset D €

D, 7 into predictions:

Definition 3 (Predictor and Posterior Risk). A predictor of type (L, T ) is a measurable map
f : Dr7 — R that produces a prediction

y = fD).

Its posterior risk is
R(f,D) = E[L(y, (D)) | D].
The firm solves:

Problem 1 (Prediction). Given a dataset D,
min . R(f, D).

*Dpr—

Denote an optimal predictor by
fearg mfin R(f, D).

8



The posterior Bayes risk of D is the minimum risk attainable after observing D:
R‘(D) = R(f(D), D).

The prior Bayes risk is the minimum risk attainable without observing any data:
R*(2) = Varly] = 1,

where & denotes the empty dataset.

Remark 2. The predictor specifies how Zillow translates a dataset of house covariates and past
prices into a price prediction for the target house. It thus corresponds to Zillow’s prediction
algorithm, and the prediction problem captures the data science team’s task of selecting and

fine-tuning that algorithm.

2.5 Covariate Selection Problem

The expected value of a dataset of type (£, 7T) is the expected reduction in Bayes risk of a

dataset D, r relative to the prior:

Definition 4. For any (£,7) € J x 7, the expected value of a dataset of type (L, T ) given

sample size n is
7 o) =1— *( y(m)
V(L. Tin)=1-Epn [R (D))
The optimal covariate choice is that which has the highest expected value among those

whose dimensions do not exceed (¢, t).

Problem 2 (Covariate Selection). Given dimensions (¢, t),

sup  V(L,T), s.t. | < e|T| <t
LT)T*T
I define the value of dimensions (n, £, t) as the highest value of any dataset type whose

dimensions do not exceed (¢, t):

Definition 5. The value of a dataset of dimensions (n, £,t) € N is

V(n, ¢, t) = sup V(E, T;n).
|c|<e
[7I<t
The difference in the scope constraints (¢, t) models the difficulty in collecting them: the firm
can collect learning covariates anonymized data, but it must collect targeting covariates for

specific instances and will therefore be more affected by technological constraints and privacy

regulations.



Remark 3 (Epistemic Interpretation). As £ and 7 are distinct, the firm adopts two different
theories in prediction: (i) L is a pure theory to learn the general structure of the world; (ii) 7 is
a practical theory to apply the pure theory to a specific instance in the world. The constraints

? and t are the maximum richness of the respective theories.

2.6 Timing

Because the optimal predictor is characterized pointwise in D (Lemma ??), I analyze the firm’s

behavior in three stages (four if I interpret scope as complexity):

Stage 0 (PCA, only if scope is complexity): perform PCA on the £ observed covariates;

Stage 1 (Covariate Selection): choose covariate sets (£, 7T) of dimensions at most (¥, t);

Stage 2 (Learning): observe M, and update beliefs about S;

Stage 3 (Targeting): observe x7 for the target instance and make a prediction y.

I solve the model starting from the last step to ease exposition, showing that the prediction

problem has a pointwise solution.

3 The Value of Data

3.1 Prediction Problem

This section characterizes the optimal predictor and discusses its connection with machine
learning algorithms and LLMs.

3.1.1 Optimal Predictor

We recall a standard Bayesian result: the predictor minimizing expected squared error is the

posterior mean.

Lemma 1 (Optimal Predictor). The optimal predictor is

f"(Der) =Ely | Deyl = xp07E[Bear | Mc].

The optimal predictor is a linear combination of the target covariates weighted by the
posterior mean of their parameters. Because instances are independent conditional on S, the
learning matrix M, influences predictions only through the posterior beliefs on . Unlearned
parameters have posterior mean zero, so the predictor only uses covariates whose parameters

have been updated using M,. Therefore, we can state a restriction on 7:

10



Corollary 1 (Targeting Requires Learning). The firm should never use a target covariate whose

parameter it has not learned:

T CL.

As the prior mean of B is 0, the firm expects that any covariate j € 7 \ L will not affect y.

3.1.2 Bayes Estimator

By Lemma 1, the learning matrix affects prediction exclusively through the posterior mean
of the parameters, which we call the Bayes Estimator. To compute it, the firm regresses the

outcome vector y € R" on the sample covariate matrix X/, i.e., it runs the model
y=XcBc +e, =Xy By

where £ € R" are the regression residuals, with
Ee=0,, Vare = (1 - S(L)) - I,

where S(£) = ) i, 5.
The residuals are sums of products of independent Gaussians and therefore are not Gaus-
sian in general, unlike the standard Bayesian linear regression case, where residuals are Gaus-

sian by assumption. To move forward, we adopt a working Gaussian error model
&~ N (0,,(1-5(L))-1).

This parallels the frequentist quasi-maximum-likelihood approach, which uses a potentially
misspecified Gaussian quasi-likelihood which is consistent provided first and second moments
are correctly specified (Gourieroux, Monfort, and Trognon (1984), Bollerslev and Wooldridge
(1992) and White (1982)). Under this working model we can invoke classic conjugate results

for Bayesian linear regression.

Proposition 1 (Bayes Estimator). The Bayes Estimator is the posterior mean f and satisfies:

1. For unlearned parameters:
E[Byc | Mc] =07

2. For learned parameters:

E[B: | Mc] = (X, Xe +(1-S(L£)- 1) X,y.

Because parameters are independent, learning f, provides no information on the unlearned

parameters f7.., whose prior mean is 0.

11



3.1.3 Interpretation of Bayes Estimator

We will offer two interpretations to understand the Bayes estimator: the first connects it to

the OLS estimator, and the second shows it is equivalent to a ridge estimator.

Shrinkage Interpretation We express the Bayes estimator in terms of a generalization
of the ordinary least-squares (OLS) estimator — the minimum-norm least-squares (MNLS)

estimator, defined as

BOLS if|C| < n,

miny, {||bell; : Xebe =y}, if[L] > n,

where (-)* denotes the Moore—Penrose pseudo-inverse.!” The MNLS is the estimator that
the firm would adopt if the residual variance were approximately zero (i.e., the cumulative
signal S(L£) = 1). It comes in two flavors, depending on whether the number of parameters is

greater than the sample size:

« Underparametrized regime (n > |L£|): the MNLS estimator coincides with the OLS esti-

mator, which is uniquely defined because X} X is invertible.

« Overparametrized regime (n < |L£|): the OLS estimator is not defined because the sys-
tem X b, = y has infinitely many solutions; the MNLS chooses the solution with the

smallest Euclidean norm.

The MNLS is useful because it is well-defined in both regimes and coincides with the maximum-
likelihood estimator. The Bayes estimator is a shrinkage of the MNLS estimator towards the

prior mean O,

Corollary 2. The Bayes Estimator is the MNLS estimator with shrinkage:

-1

+ A
E[fc | Mc]=|(1-S(0) - (XpXc) + 1| B
e o v/
Shrinkage Factor

Because it is the maximum likelihood estimator, the MNLS estimator attributes all the
variation in the learning matrix M, to the parameters f.. In reality, a fraction 1 — S(L) of
the variation in y is residual variance and not due to .. The posterior mean corrects for this

by shrinking ¥N'Stowards the prior mean 0y with a shrinkage factor equal to the residual

variance 1 — S(£). Adding a new covariate j ¢ L reduces the residual variance by s;, the

For a matrix A € R™™, the Moore-Penrose pseudo-inverse is the unique matrix A* € R™" satisfying

AATA=A, ATAA" = A*, (AA'Y = AA*, (ATA) = A*A.

12



variance of x;, thereby lowering the shrinkage factor and the weight of the prior mean. Hence,
the posterior mean moves closer to the MNLS estimator. Hence, covariates lend precision to
each other: observing a new variable improves the accuracy of the estimated parameters of
the others.

Ridge Regression Interpretation It is well known in the Bayesian statistics literature (see
DeGroot (2005)) that estimators like that in Proposition 1 have a frequentist counterpart in

the ridge regression estimator defined as:

Hridge 1 5 5
298(1) = arg min { |y — XeBel? + ABel? t
n

BrerlLl

where A > 0 is a penalty for the squared Euclidean distance of ﬁ ¢ from the origin. In practice,
Ais typically chosen by cross-validation to minimize the prediction error. The following result
bridges the gap between the practical applications and our theoretical results by establishing
a link between the set of learning covariates £ and the theoretically optimal regularization

parameter A.

Corollary 3 (Ridge Regression). The posterior mean coincides with a ridge regression estimator
with an optimal penalty

A(n, L) = 1=948) S(ﬁ).

Equivalently,
E[ﬂﬁ |M£] rzdge( )

Lindley and Smith (1972) establishes that the optimal penalty A is the ratio of the resid-

A=A (L)

ual variance to the structural variance (which is Var[f;] = 1). By putting structure on the

regression residual, we can study the dependence of 1}, on the set of learning covariates L.

3.2 Covariate Selection Problem

Henceforth, we assume 7 C L. The quadratic loss, together with the fact the optimal predic-
tion is the posterior mean, implies that the value of a dataset is the reduction of variance it

brings forth.

Lemma 2. Assume T C L. The value of a dataset of type (L, T ) is the variance of the optimal

predictor
VL, T) = Var[f*(Dep)] = Y s;Var [E [1Mc]] .

JjeT

The value decomposes additively across targeted covariates and, for each j, multiplica-

tively into:
1. A signal term s; = Var(x;), and

13



2. A learning term Var(E[f; | M;]), measuring how sensitive the posterior mean of f; is
to Mﬁ.

With no learning data, E[f; | M;] = 0 a.s.,, so Var(E[f; | M¢]) = 0, and the value is zero.
With infinitely informative data, E[f; | Mz] — p;, so Var(E[f; | M¢]) — Var(p;); under
the normalization Var(f;) = 1, the maximal contribution of covariate j is s;. Thus v(L,7)
increases both when we target high-variance covariates and when M, is more informative

about their parameters.

Lemma 3 (Variance of Bayes Estimator). The posterior mean satisfies

0, jeJNL,

M) =y o ([ ). e, b0
1+ ——=

Sj

1-5(C)

The variance of the Bayes estimator is increasing in s;, since if the covariate is more vari-
able, a greater fraction of the variance along its direction is due to its parameter rather than
the regression residual. Furthermore, it is decreasing in the Bayes penalization A): penaliza-
tion pulls the estimates towards the prior mean, which is fixed, thereby reducing the variance.
The variance of the Bayes estimator will be large if the learning sample size n is large or the
learned covariates are more informative, so the residual S(J \ £) is small. Note that the

reduction of posterior variance on the parametr of an observed covariate is

1
el 41
which, up to a reparmetrization, coincides with the “data depreciation rate” of an AR(1) pro-
cess in Section 2.1 of Farboodi and Veldkamp (2025): thus, uncertainty on a covariate’s pa-
rameter and temporal obsolescence of knowledge in a dynamic AR(1) cause the same the loss
of information. Furthermore, reductions in the penalty A*(n, L) affect the parameters of all
targeting covariates: learning covariates are non-rival as each covariate contributes to better
estimates of all the targeting parameters, independently from how many targeting parameters
are affected. This

Putting the result in Lemma 3 inside Lemma 2 gives the value of a dataset of a given type:
Theorem 1. The value of a dataset of type (L, T ) is
: _ Sj L] I£]
V(E;T)—Zw-f-()( — +—].

jer Tyt noon

The closed form in Theorem 1 allows us to study how the choice of dataset type (£, 7)

affects its value. In particular, it provides the foundation for solving the covariate selection
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problem below.

3.2.1 Optimal Covariate Selection

Proposition 2 (Optimal covariate selection). Consider the covariate selection problem
max V(T , L),
T.LCT
s.tIL] < ¢,
IT| <t

Then the optimal sets of learning and target covariates are the covariates with the largest vari-
ances:
L"=ar ; T = i
gmax ), s argmax ) s
||=¢ JEE \T=t J€T
It is sufficient to observe that v(L, T) is increasing in all s;, directly for j € 7 and through
the penalization A for j € L. The firm treats covariates as production factors of heterogeneous
quality: each additional covariate’s marginal productivity (variance) falls as one moves down
the ordered list.
Notation. Relabel s; so that 7* = {1,..., t}, £L* = {1,..., £}. Redefine

S0 = S({1, ..., £}),

which is increasing and concave in ¢ as ;) is decreasing in j. Furthermore,
A(n, ) = A(n{1,.... ),

which is decreasing and convex in £ as s(;) is decreasing in j.

Corollary 4. The value of a dataset of dimensions (n, £, t) € N? is
V(n,t,t) = V(t,A"(n,t)),

where
s

3
UHEDY iil’ A(n, ) =

j:1 Sj

1_—:(‘7), S(0) = ]Z:, s

Assumption 1. We will henceforth assume

— — 0.
n

This assumption rules out overparameterized regimes. It lets us avoid random-matrix tools

(e.g., Marchenko—-Pastur limits for the empirical spectral distribution) needed when ¢/n —
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Yy > 0. The payoff of this assumption is that we can derive closed-form expressions while
allowing heterogeneous variances {s;}. By contrast, in the high-dimensional regime ¢/n —
Y € (0,00), explicit formulas are typically available only under homoskedastic designs; with
heteroskedasticity, one usually solves fixed-point equations numerically. For a version with
¢/n — y > 0 under homoskedasticity, see Appendix B. The asymptotic term O (I—[n:‘) vanishes
provided that the parameter number |£| grows slower than the sample size n, i.e., as long as
‘£n| — 0. The intuition is that, provided the dimensionality does not explode relative to the

sample size, the empirical covariance matrix converges to the population covariance matrix.

4 The Marginal Returns to Data

I uncover three properties of the value of data:

1. Learning-Targeting complementarity: Targeting covariates are more valuable when
(a) there are more learning covariates, or (b) there are more learning observations (Propo-

sition 5);

2. S-shaped returns to learning: Adding early covariates sharply improves prediction
by reducing misspecification, but returns flatten once many are included—unless signal

is extremely diffuse (Proposition 7);

3. Covariate-observations Interaction: covariates and observations are complements

when learning data are scarce, but substitutes when data are abundant (Proposition 8).

These results highlight a general principle: the value of information is structural, mean-

ing it is defined only in relation to other information.

The following lemma establishes a continuous approximation of Corollary 4 when co-

variates are numerous.
Proposition 3. Suppose the variances {sj}f.zl arise from a density s; = s (f,) 3, and define
the asymptotic ratios
¢ ¢4
{’Elim(—__)e[o,l), tElim(—__)e[O,{’]

f—o0 {—o00 f

Let S(¢) = fo[ s(u)du. Then, treating n as a real number, I can write
V(t,2) = /0 S (s D), X(n 0= I_TS(")
Lemma 4. Note that
s ) = Var [ 0] = 50
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is decreasing in u because it is increasing in s(u), which is decreasing in u.

4.1 Returns to Targeting

I now study the marginal value of target covariates t and its interactions with learning

covariates £ and sample size n.

Proposition 4 (Diseconomies of Scope in Targeting).

(8, ) = s(D"(t; 1) > 0
v(t, A7) = (D" (1; 1) + s(DvI (1) < 0

The firm always gains from observing more covariates. By 2, the firm ranks covariates
in decreasing order of informativeness, so s(u) < 0 and the marginal value of target
covariates decreases with t. Covariates act as inputs of heterogeneous quality, analo-
gously to the Law of Diminishing Returns in Ricardo (1817): the firm uses higher-quality

inputs (the most informative covariates) first, lower-quality ones later.

However, the firm can mitigate the decline in returns to t by increasing the number of

learning observations n or learning covariates ¢.

Proposition 5 (Learning-Targeting Complementarities).

vee(t, A (n, 0)) = s (t; DAi(n, £) > 0
Ven(t, A*(, 0) = ()05 (t; DAL(n, £) > 0

Increasing the number of learning covariates £ or the number of observations n reduces
the penalty A*. Both effects increase the variance of the ridge estimator for all infra-
marginal covariates u < £ included in the target set. Hence, if the firm observes a new
covariate t, its estimator is more sensitive to the data and has a higher marginal value.
While these complementarities are often intuited by data scientists, to my knowledge
they have not been formally proven in the literature. The complementarity between ¢
and n is consistent with the empirical findings of Schaefer and Sapi (2023). When we
interpret ¢ and t as the number of components in a PCA, we recover the complemen-
tarity between data and analysis discussed in Chen, Chiang, and Storey (2012). More
generally, the learning—targeting complementarity arises from the non-rival nature of
the learning data: better leanring (lower A*(n, £)) has a positive effect on each targeting
parameter, and this effect does not depend on how many parameters are affected. The
complementarities in my framework arise because covariates are collected for all obser-

vations: once a covariate is acquired, it improves inference everywhere in the dataset.
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This mirrors Wilson (1975): better information can be leveraged across the entire scale

of production, so the non-rival nature of information generates complementarities and

increasing returns.

4.2

Marginal Returns to Learning

The following results establish that learning observations n yield positive but diminish-

ing returns.

Proposition 6 (Diseconomies of Scale in Learning).

t .
V(24 (n, ) = / S0 s M)A (n, O > 0,

0

t . .
V(2,1 (n, 0)) = / s(u) |07 Cus DAL (n, 0) + 078 (us 1) (As(n, f))2 <0.

0 \ J
Law of Large Numbers<0 House Party Effect>0

A larger learning sample decreases the penalty A*, thereby increasing the variance of

the estimators of all targeted covariates. The gains, however, decline with sample size.

Two opposing forces:

(a)

(b)

Law of Large Numbers: since the penalty A*(n, ) decreases with n but is bounded
below by zero, it is convex. Each additional observation thus eliminates less resid-
ual uncertainty, yielding diminishing returns. This pattern is consistent with Ba-
jari et al. (2019), Schaefer and Sapi (2023), and the Law of Large Numbers, which

ensures that parameter estimates converge as n grows.

House Party Effect: the variance of the ridge estimator is

s(u)

ridger . . —
v w; A) A+ s(u)’

which is convex in A. and bounded below by zero. This means that the marginal
effect of reducing A is decreasing in .. When A is large (little data), a small re-
duction has almost no effect on variance—like asking one guest to quiet down at a
noisy house party. When A is small (ample data), the same reduction sharply low-
ers variance—like asking one of the last talkers in an almost-silent room to stop,

which dramatically improves the ability to hear.

The House Party Effect dampens but never overturns diminishing returns. Intuitively,

for the HPE to be strong, the penalty A must be small (the “room is already quiet”), which

occurs only when n is large. But at that point A*(n, ¢) is nearly flat, so

M is close to
n
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zero. Thus, just when variance convexity would amplify the effect of lowering A, the

penalty itself barely moves. The HPE has a negligible effect on returns to observation.

In Proposition 7 I show that it can substantially impact returns to learning covariates.

Proposition 7 ((Dis-)economies of Scope in Learning). The marginal value of expanding

the set of learning covariates is given by

t
Vi(t, A*(n, 0)) = / ()] (us DAL, O)du > 0,

0

with curvature

t . .
Vit X (n, £)) = / s(u) |07 (s DA (n, £) + V5 (s 2) (A5(n, f))2 du.
0 J J

\

Law of Large Numbers<0 House Party Effect>0

Returns to learning covariates are increasing if and only if n < ny, (£),where ny,(¢) is

implicitly defined by
V[{’(ts A*(ﬁ'Vu’ ()) =0.

Moreover, if s(u) is log-concave ny, () is decreasing in .

Increasing the set of learning covariates always raises the value of data, but the returns
can be increasing or decreasing. When the number of observations is small, the penalty
term A” is large, so each additional learning covariate substantially relaxes the regular-
ization. Because the House Party Effect scales quadratically with A7, this can outweigh
the diminishing force of the Law of Large Numbers and generate increasing returns.
As the sample grows, however, the penalty flattens and the House Party Effect loses
strength, so the Law of Large Numbers dominates and returns become concave. Log-
concavity of s(-) ensures returns go from increasing to decreasing (the S-shape found
Carballa-Smichowski, Duch-Brown, et al. (2025)): with thin-tailed signal distributions,
each additional covariate captures a decreasing fraction of the residual variance reduc-
ing the HPE effect.
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------ Concentrated signal (concave)
Intermediate signal (S-shaped)
— Diffuse signal (convex)

Prediction value V(¢)

Learning covariates ¢

Corollary 5. If s(u) = 1 for all u € [0, 1], then

V[[(t, A*(n, [)) > 0.

In the limit case in which all covariates are equally informative there are no Ricardian
diminishing returns: the house party effects always dominates and there are always

increasing returns.

I now show that the cross derivative of learning covariates and observations can be both

positive or negative depending on the size of n and ¢.

Proposition 8 (Complementarity/Substitutability in Learning). It

t . .
Veu(t, A*(n, £)) = / s(u)( v;ldge(u; MDA (n, 0) + vi’fge(u; MDA (n, O (n, ) ) du.

0

Law of Large Numbers<0 House Party Effect>0
In particular,

lim Vi, (¢, A*(n, £)) > 0

n—0%
while

%1_{1; Veu(t,A*(n,£)) = 0.
Hence, the returns to learning covariates are increasing if and only if
n < ny, (9),
where n(?) is implicitly defined by

Vee(t, A" (v, (£), £)) = 0.

Moreover, ny, () is decreasing in £.
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The interaction between learning covariates and sample size reflects two opposing forces.
On the one hand, both additional covariates and additional observations reduce the
penalty 1*, which makes them substitutes (Law of Large Numbers effect). On the other
hand, when A* is small, even a slight further reduction has a large payoff because of

variance convexity, so the two become complements (House Party Effect).

Covariates and observations are complements only in data-scarce environments, when
reducing the penalty is still highly valuable. Once the dataset is already rich, expand-
ing either margin yields little extra benefit because the other has already lowered the
penalty close to zero. Economically, this result shows why firms with small datasets
benefit from both richer features and larger samples, whereas firms with large datasets

can choose whether to collect more data or more features.

ACP)

learning spillover Law of Large Numbers

dominates (complements > 0) ' dominates (substitutes < 0)

V. (interaction)

4.3 Modularity

The previous results examined marginal returns along single data dimensions—target
covariates, learning covariates, or observations—and how these interact. I now ask:

what happens when whole datasets are combined?

This is central in theory and practice: firms often merge data sources—e.g., app ecosys-
tems or regional user bases—rather than expanding one margin. Whether such mergers
raise or lower the total value of data depends on modularity: do datasets reinforce each

other (complements) or overlap (substitutes)?

Formally, modularity is the gap between the joint value of two datasets and the sum
of their standalone values. A positive gap implies complementarity, a negative one
substitutability. Its sign depends on the curvature of the value function. The Law
of Large Numbers pushes toward substitutability, while the convexity of ridge vari-
ance (the House Party Effect) pushes toward complementarity. Which force dominates

hinges on whether data are scarce or abundant.

The following corollaries formalize this result, establishing conditions under which

datasets are complements or substitutes when combined.
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Corollary 1 (Complementarity across datasets with fixed n). Fix n and t. For ¢;,£, > 0
with £, + £, < ¢, define the supermodularity gap

A([b [2) = V(n’ [1 + fZ: t) - V(na [1’ t) - V(ns [2: t) >0 < n< ﬁVa(f)‘

so datasets are complements if and only if observations are scarce. In particular, if s(u) = 1

for all u, datasets are always complements.

This corollary shows that whether two datasets are complements or substitutes depends
on the curvature of the value function in ¢. For small n, the House Party Effect domi-
nates: adding one dataset makes the other more valuable, so datasets are complements.
For large n, the Law of Large Numbers dominates: the datasets overlap in value, so they
are substitutes. The threshold ny,(¢) marks the switch between these regimes. In the
special case of equally informative covariates (s(u) = 1), diminishing returns vanish and
datasets are always complementary. The result explains why merging small datasets

yields complementarities, while large ones add little beyond duplication.

Corollary 2 (Substitutability across datasets with fixed ¢). Fix ¢ and t. For n;,n, > 0,
define the supermodularity gap

Ap(ny,ny) = V(ng 4+ ny, 6,t) = V(ng, 6,t) — V(na, £, 1) <0,
so the datasets are substitutes.

This corollary establishes that when ¢ is fixed, datasets that differ only in their number
of observations are always substitutes. The supermodularity gap A,(ny, n,) is strictly
negative, since V,, > 0 but V,, < 0. Intuitively, once one dataset provides additional
observations, the other yields less incremental value, as both reduce the penalty A*
through the same channel. Thus, unlike covariates, observations never generate comple-
mentarities across datasets: merging samples adds value, but less than the sum of their

parts.

5 Applications

It will be useful to state the two distributions which simplify the integral in Proposition 3

5.1 Natural Monopoly and Vertical

An ecosystem has a given number of users n. The ecosystem is managed by an adtach (e.g.,
Google) which operates a proprietary app which collects a covariate that accounts for a frac-

tion k € [0, 1] of the variation in the target variable. There is a unit mass of third party apps
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a € [0, 1] each of which collects a single covariate with variance s(a) so that fo1 s(a)da = 1—k.
Assume that apps have a fixed cost of entry c. The ecosystem is managed by an adtech firm
which observes covariates. We assume the apps have zero outside option and that the adtech
can do a take it or leave it offer, thereby extracting the entire surplus. Suppose the adtech has
an increasing and concave revenue function R(v) with R’(v) > 0 > R”(v), which models the
surplus it can extract from advertisers. Furthermore, suppose that the adtech can only target
using covariates from its own app which represents a fraction k of total variance. The profit
of the adtech will therefore be

m?xH({’) = R@) — ct,

k

14 1—k—f(r):ks(a)da ’

sto=V({) =

I proceed in two steps: first, I characterize the cost of attaining a given information value;
second, I analyze the firm’s profit maximization problem and the conditions under which
prediction technologies exhibit natural monopoly.

We first assume that the signal is sufficiently spread across the apps.
Assumption 2. We assume the distribution of signal across apps s(-) is log-concave.

Under this assumption, by Proposition 7, V(¢) is increasing, convex and then concave in

Information Cost For any information value v > 0, let
) =V (v)

denote the implied demand of learning covariates. By Assumption 2, #v) is increasing in v,
concave and then convex in V.

The information cost function is

C(v) = cl(v), AC(v) = ? MC®) = C’'(v).

For any differentiable function f, I define its w.r.t. its argument by e;(x) = f'(x) - &

The Baumol (1977) subadditivity test reduces to a simple elasticity comparison.

Lemma 5 (Natural monopoly condition). At anyv > 0,
AC(v) > MC(v) << ey(#v)) > 1.

The condition requires that the percentage growth of value from additional covariates

exceeds the percentage growth of cost (which is 1 since the cost is linear in ¢). If value scales
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faster, it is inefficient to split the market across multiple learning firms, so the market is a

natural monopoly.

Lemma 6. Under Assumption 2, the marginal cost is U-shaped: decreasing and then increasing.
Specifically,
MC'(W) <0 < 0v<idnt)Lec,

where 0 is implicitly defined by MC’(0) = 0 and does not depend on c. Furthermore
U =sup{v > 0,AC(v) > MC(v)}.
This implies that the

5.1.1 Profit Maximization

Given C(v) = c #(v), the firm chooses information value v to maximize
II(v) = R(v) — C(v).

Proposition 9 (Profit maximization and NM at the optimum). Let 0 be as in the previous lemma
and define
R'(9)
1ON
For any ¢ > 0, let v*(c) = arg max,»o{R(v) — c #(v)}. Then:

If ¢ > ¢, every maximizer satisfies v*(c) < 0, hence AC(v*(c)) > MC(v*(c)) and the profit
optimum is a natural monopoly.

If0 < ¢ < ¢, every interior maximizer satisfies v*(c) > 0, hence AC(v*(c)) < MC(v*(c)) and

¢

the profit optimum is not a natural monopoly (unless the corner v*(c) = 0 is chosen).

Equivalently, the profit optimum is a natural monopoly if and only if ¢ > ¢.

Thus, even absent fixed costs, prediction exhibits sunk costs: profitability requires market
size (or willingness-to-pay per unit of prediction quality) to exceed the minimum average cost
of information. There is therefore a minimum scale of data collection before prediction be-
comes viable, which makes prediction technologies prone to natural monopoly. The presence
of naturla monopoly deriving from icnreasing returns when data is scarce is coherent with
Farboodi and Veldkamp (2025) results on S-shaped reutrns.

Therefore, a natural monopoly is more likely if c is large and data is scarce. As privacy
policy will increase ¢, policymakers face a trilemma: they can achieve at most two of the

following three objectives:
« Privacy: limiting data collection and sharing;

« Competition: preventing concentration of data in the hands of one firm;
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« Efficiency: exploiting increasing returns in learning by concentrating data.

Prioritizing privacy forces a trade-off: either allow concentration and preserve efficiency
through regulated access (privacy + efficiency), or limit concentration to preserve competition

at the cost of efficiency (privacy + competition).

Privacy
Privacy Rules Privacy Rules
+ +
Competition Policy Access/Interoperability
Competition Efficiency

No Privacy Rules

5.2 Data Broker Mergers

I apply the technology V(n, ¢, t) to a two-broker market. I assume that brokers are of two
types

« Data list brokers: which have the same covariates on distinct users;
« Data append brokers: which have distinct covariates on the same users.

Brokers set prices to a continuum of users with types 8 ~ G. Our framework is partially in-
spired by Gu, Madio, and Reggiani (2021). However I depart from the unit demand assumption

to allow for double marginalization. I assume the planner maximizes total welfare
Ws(Ps) = CSs(Ps) + Is(Ps).

Given

CSw)=V / w(e — 0)g(0)do.
0

I show data list broker mergers are anticompetitive, whereas data append broker merg-
ers can be procompetitive if the available data is scarce thanks to the elimination of double
marginalization. Hence, a tougher privacy policy, which restricts the amount of data avail-

able, should be accompanied by a laxer merger control policy for append brokers with scarce
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data, to avoid hindering efficient data consolidation, in particular if data is used in complex
prediction problems, which have more diffused signal density s(-) and more increasing re-

turns.

5.2.1 Data List Brokers

Proposition 1 (Data List Merger). Suppose two brokers sell lists that only increase n with ¢
fixed. Then V,, < 0 implies the datasets are strict substitutes: for all ny,n, > 0, V(n;+ny, £,t) —
V(ny, £, t) — V(ny, £, t) < 0. Therefore competition between list brokers lowers prices relative to

integrated monopoly. A merger of list brokers raises price and reduces adoption.

5.2.2 Data Append Brokers

Proposition 2 (Data Append Merger). Under Assumption ??, a merger between two data ap-

pend brokers can be either anticompetitive or procompetitive:

« If n < ny, (), the data appends are complements. Hence, the merger eliminates double

marginalization so it is procompetitive.

« If n > ny, (), the datasets are substitutes. Hence, the merger weakly increases price and

strictly lowers adoption, so it is anticompetitive.

Given iy, (f) is decreasing in ¢, if data are scarce, it is more likely the merger is procompetitive.

In the special case of equal covariates, the merger is always procompetitive.

If n < Ay, (¢ (so Vi > 0), the House Party Effect dominates and the incremental value
of extra attributes is increasing. Then V;, > V; + V,: users value the second append more if
they purchase the first append. Without the merger, both brokers would apply a margin to
extract profits, resulting in the classic double marginalization problem. A merger between the
brokers reestablishes efficiency by eliminating the double margin.

If n > ny,(¢) (so Vi < 0), the LLN dominates and the incremental value of extra attributes
is decreasing. Then Vi, < V; + V,: users view the second append as a weaker add-on. Com-
petition between the two apps disciplines price; a merger eliminates this rivalry and moves
the price toward monopoly bundling. A merger of append brokers on the same users is likely

anticompetitive: it raises prices and lowers adoption.

5.3 Covariate Exclusivity Deals

In May 2024, Reddit signed an exclusivity agreement with OpenAl, granting privileged access
to Reddit content as training data for large language models (LLMs).'® To model this, I assume

there are two sets of covariates:

18“Reddit and OpenAl Announce Partnership,” OpenAl Blog, May 16, 2024; A. Paul, “Reddit Strikes Al Content
Deal With OpenAl Ahead of IPO,” Reuters, May 16, 2024.
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+ Reddit covariate R: the linguistic and conversational features embedded in user-generated

discussions;
« Proprietary covariates P: other sources of text data that entrants can access.

In this section, I show that this deal amounts to monopolizing an informative covariate, which
raises the marginal value of P for the incumbent (OpenAl), while lowering a potential en-

trant’s incentive to collect them.
5.3.1 Environment
There are three actors: an upstream data provider (Reddit) and two downstream firms, an

incumbent I and a potential entrant E.

Data and value of data. There are two informative covariates,
R ("Reddit") and P ("proprietary"),

with signal strengths sg, sp > 0. In the Reddit-OpenAlI case, the license grants corpus/API
access that improves learning, but does not provide target-level Reddit covariates at inference.
Therefore, I assume that R can only be used for learning, whereas P can be used for both

learning and targeting. For any learning set £ C {&, R, P},

_ Sp _ 1- S([:)
V(L) = FRNIOL ML) = —

Sp

where S(£) = ) icp )

Downstream profits. If firm f € {I, E} achieves prediction quality g; = V(Lf), down-

stream operating profits are

n(qr.q-5) = agr+y(qr—qy),  a>0,y>0,

where a reflects absolute-quality rents, while y reflects relative-quality rents deriving form

business stealing.

Costs and profits. Collecting proprietary data P costs cp > 0. To ensure it is always prof-

itable to collect some proprietary data, I make the following assumption:

Assumption 3. If R is available open source, it is profitable for firms to collect P

cp < aV({R, P}).
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Accessing Reddit covariates requires a license fee Ty. Therefore, Firm f’s total profit is
Iy = m (g, ¢-5) — crip — T,
where i£ € {0, 1} indicates whether P is collected.
Timing

1. Reddit offers either an exclusive contract X (selling R only to I) or a nonexclusive con-
tract N (selling R to both).

2. Entrant E decides whether to enter.
3. Firms decide whether to collect P (if,f).

4. Downstream profits 7? are realized.

Bargaining Reddit is the proposer and makes take-it-or-leave-it offers.
o Under X, Reddit sets TIX and sells R only to I.
« Under N, Reddit sets (T}, T}Y) and sells to both.

In either case, fees can extract up to each user’s incremental profit from obtaining R, relative

to the outside option where neither firm observes R.

5.3.2 Entry and Investment Incentives

The marginal values of P are

AP |R)= V({R,P}) — V{R}) = ﬁ AR = SRR,
AP | @) = V({{P}) - V(@) = Hzﬁ 2° = 1SUrD,

Since sz > 0, T have A? > AR and thus A(P | R) > A(P | &): Reddit data raises the marginal
value of proprietary data.

Best responses:

1 fAR|2) >, |1 ifAPIR) > e,

St
I
-

"UN
[l

0 otherwise, 0 otherwise.

Proposition 3 (Entry deterrence). Suppose sz > 0. If
cr € (AP | @), AP | R)],
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then the incumbent invests in P while the entrant does not, so E does not enter. Therefore, exclu-
sivity over R allows I to deter E from entering by lowering its incentive to collect complementary

data.

5.3.3 Profitability of Exclusivity

Assumption 4. The cost
cp € (AP | 2). AP | R)].,

so that I can deter E from entering if and only if I has exclusive access to R.

Qualities.

Exclusive (X) : ¢ = V{R,P}), ¢y =0,
Nonexclusive (N) : ¢ = qf = V({R, P}).

Incremental downstream profits.

Af = (a+y)VER, P} — cp,
AY = aV({R,PY) —cp, fe{l,E}

Proposition 4 (Reddit’s exclusivity incentive under downstream competition). Under As-
sumption 3, Reddit prefers exclusivity if and only if
Cp
I > < >a— .
RO PR VAR P
Intuition. Exclusivity creates a quality gap ¢ — qf = V({R, P}), yielding rent-shifting
profits proportional to y. Under nonexclusive access, this gap vanishes, so Reddit can only
monetize absolute quality («). When relative-quality rents dominate, exclusivity yields higher

revenues even though it reduces total information (the entrant does not collect P) and lowers

consumer welfare. The region where exclusivity is preferred is increasing if:

Reddit has smaller datasets (lower V({R, P}));

Stronger substitutability between I and E (higher y);

Lower sensitivity of profits to absolute quality (lower «);

« Higher costs of proprietary data (higher cp).
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Welfare Optimum [ define welfare as the sum of downstream operating profits:
W =P+l

I exclude Reddit’s licensing fees, which are pure transfers, and abstract from consumer
surplus to isolate the industry-level impact of exclusivity on investment incentives and com-

petition.

Proposition 5 (Welfare comparison). Assumption 3, exclusivity is never welfare-optimal: total

downstream profits are strictly higher under nonexclusive access.

This analysis focuses on downstream profits only. Including consumer surplus would rein-
force the result, since exclusivity reduces both entry and the quality available to users. Thus,
the welfare cost of exclusivity is conservative here.

Policy implications. Exclusivity creates a foreclosure channel that operates through com-
plements: by monopolizing a highly informative covariate R, the incumbent weakens rivals’
incentives to invest in complementary data sources. Even if entrants retain open access to
generic corpora, their reduced incentive to clean, curate, or engineer these sources lowers the
overall quality of competition. Therefore, regulators concerned with Al market concentration
may treat exclusivity over highly informative datasets (e.g. Reddit, StackOverflow, PubMed,
arXiv) analogously to input foreclosure in traditional industries. By locking up key comple-

ments, the incumbent amplifies its lead and undermines rivals’ ability to compete downstream.

Exclusivity-relevant wedge

: % Cp
AP | @) A(P | R)

Both invest

Only I invests (entry deterred)

Neither invests

Figure 1: Investment incentives as a function of proprietary data cost cp.

6 Managerial Implications

My findings have implications for managers, which face increasingly complex decisions on
how much and what data to collect. Iansiti (2021) recognizes this difficulty highlighting the
importance of accounting for the hetereogenity in data types and the complementarities they

generate.Managers must make three decisions

1. Profitability of data collection: Is it worthwhile to invest in building a data infras-

tructure?
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2. Covariate selection: If so, which user attributes should be prioritized for collection?

3. Depth vs. breadth of data: Should the firm focus on expanding the user base (more

users) or on increasing engagement (more data per user)?

Profitability of Data Collection Corollary ?? implies prediction technologies typically
require a minimum scale of data before becoming profitable, the “cold start” problem discussed
in Iansiti 2021. This creates significant sunk costs: firms entering data-intensive markets must
commit resources upfront to both user acquisition and data infrastructure before returns can

materialize. The challenge is most pronounced when predicting outcomes that:
« Depend on a large number of user attributes (e.g. genomics),
+ Exhibit high intrinsic unpredictability (e.g. financial markets), or

« Face elevated data costs due to regulation (e.g. healthcare or privacy-sensitive sectors).

Covariate Selection Proposition 2 shows that when choosing which variables to collect

managers should balance two aspects:

1. Relevance: How strongly the covariate is related to the outcome of interest (i.e. how

much predictive power it provides).

2. Heterogeneity: How much the covariate varies across the population, since greater

variation yields more information for distinguishing between users.

For example, suppose a streaming platform wants to predict churn probability. Age may be
more directly correlated with churn than preferred device type. However, if nearly all users
fall into a narrow age range (e.g. 25-35), then age offers little information for prediction.
By contrast, device type (mobile, tablet, smart TV, console) might be less correlated with
churn on average, but because it is much more heterogeneous, collecting it can yield greater
predictive gains. Thus, managers should not focus solely on variables with the strongest
average correlation, but instead prioritize those that combine relevance with heterogeneity in

the user base.
Value of Data Integration Proposition 1 establishes that distinct covariates are comple-
mentary, which formalizes the benefits from data integration discussed in Goodhue, Wybo,

and Kirsch 1992

Depth vs. breadth of data To choose their firm’s data strategy, managers must know

where there firm is in the learning data space
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To choose the right data strategy, managers must understand where their firm is located
in the learning space defined by the number of observations (n) and the number of covari-
ates learned (¢). The trade-off between expanding the user base (more n) or collecting richer

attributes (more ¢) depends critically on this position:

« Loss (V < C(V))

6: the amount of data acquired is insufficient to make predictions. Firms need to pass

through this phase to accumulate enough data to start making profitable predictions.

« Explosive Growth (9*V /a¢*, 3*V /dndt > 0): Both adding users and collecting new co-
variates reinforce each other, producing rapid gains. Startups in early stages of ad-
targeting or recommendation may be here, where every new user and attribute dramat-

ically boosts prediction quality.

« Covariate Explosion (9°V /€ > 0 > 9*V /9nd{): Gains come mainly from richer user
data, not more users. For instance, a medical Al firm with limited patients benefits more
from expanding the range of biomarkers collected per patient than from recruiting a few

extra patients.

« Balanced Growth (6?V /af* < 0 < 3°V /dndf): Returns to new covariates diminish,
but expanding the user base still boosts the value of existing attributes. Social media
platforms at scale often fall here, where growth in users is more valuable than adding

more features per user.

« Saturation (8*V /a¢*,3*V /onat < 0): Both margins yield diminishing returns; predic-
tion performance has plateaued. At this stage, further data collection may not be cost-

effective, and firms should shift attention to algorithmic innovation or new products.

The framework also sheds light on firm growth. Early investment decisions shape a firm’s
long-run trajectory in the learning—data space. If, during the explosive growth phase, the

firm directs slightly more resources toward covariate collection, its path may shift from
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Explosive Growth — Balanced Growth — Saturation

to a path of

Explosive Growth — Covariate Explosion — Saturation.

The latter path stabilizes at a much higher overall data scale, even though the initial dif-
ference in investment is small. In other words, modest early increases in the collection of
user attributes can push firms from balanced growth toward covariate explosion, ultimately
leading them to operate with much larger models in the long-run equilibrium. These two
paths are coherent with Farboodi and Veldkamp (2025) which highlights that the presence of
economies of scale when data are limited implies that small firms face substantial sunk costs
before becoming productive but once they reach the explosive growth phase they either scale

up quickly (Covariate explosion) or get caught into a data-poor trap (balanced growth).

7 Conclusion

This paper develops a general framework for understanding the value of data in prediction by
explicitly modeling covariates. The analysis shows how complementarities between learning
and targeting, economies of scope across covariates, and interactions between covariates and
observations can generate increasing returns, offering a microfoundation for the rich-get-
richer effects often observed in data-driven markets.

These forces have direct implications for policy and strategy. Prediction technologies
may display natural monopoly characteristics, as concentrating covariates within one firm
can raise efficiency. Privacy regulation that fragments data supply may inadvertently rein-
force monopoly power, creating a trilemma between privacy, competition, and efficiency. The
framework also highlights that not all data mergers are alike: list mergers, which combine the
same covariates across users, are anticompetitive, while append mergers, which combine dif-
ferent covariates on the same users, can raise welfare by eliminating double marginalization.
Exclusivity deals, such as those signed between Al labs and data providers, may profitably
foreclose entry by depriving rivals of essential complements. For firms, the results imply
that prediction entails substantial sunk costs: early on, investment should balance user ac-
quisition and attribute enrichment, while specialization and integration become optimal at a
larger scale.

More broadly, the analysis cautions against treating data as homogeneous. Policies pro-
moting open data without regard to dataset composition may miss crucial efficiency margins,
whereas access remedies such as FRAND-priced APIs or federated learning target comple-
mentarities more effectively.

My work opens two natural avenues for future research. The first is empirical. I aim
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to develop a methodology to test my results on real datasets. While the existing empirical
literature'® provides partial support to my findings, it suffers from two limitations: (i) most
studies focus on a single dataset, whereas uncovering general properties requires comparing
multiple datasets along common dimensions; and (ii) no existing work systematically tests
all the properties identified in my model. Once these empirical properties are validated, my
framework could serve as the foundation for a practical formula for data valuation, in the
spirit of the Black—-Scholes—Merton formula for derivatives.”” The second avenue is theoret-
ical. Embedding my static model into a dynamic Wald sampling framework would allow me
to microfound data-enabled learning and analyze when feedback loops generate convergent
data-collection strategies versus when they diverge.

Finally, the framework invites a broader research agenda: in his seminal critique of cen-
tral planning, Hayek 1945 emphasized that “knowledge... never exists in concentrated form
but solely as the dispersed bits... which all the separate individuals possess”. Today, users’
online activity transforms such dispersed knowledge into datasets that can be centralized, re-
combined, and monetized. My analysis shows that statistical properties of prediction create
intrinsic incentives for such concentration. The concentration of data in servers controlled by
a few large firms raises a broader question: do prediction algorithms substitute for, or comple-
ment, the market mechanism? Is the rise of data the panacea to market failures deriving from
asymmetric information and search frictions, or is it the first step to the fall of the market? I

leave this foundational question open to future research.

YSee Bajari et al. 2019; Schaefer and Sapi 2023; Lee and Wright 2023; Yoganarasimhan 2020; Carballa-
Smichowski, Duch-Brown, et al. 2025
20See Black and Scholes 1973, Merton 1973
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A Proofs

Proposition 6 (Bayes Estimator). Under the working Gaussian regression

YIBe~NXeBe, 1 =SENL),  Be ~ N(0,1:), By independent of By,

the posterior mean satisfies

E[Byc | M=0,  E[f:| M= (XpXe +(1—SENL) X,y

Proof. Write the log posterior for B, (up to an additive constant):

1

1
s a1y — XeBel® = S1Bcl + const.
2(1 — S(E)) ”y Eﬂﬁ" 2||/3£|| cons

log p(Be | y. Xr) = -

Collect the quadratic terms in f.:

——————B. Xy + const.

1/3/ ((1 . XL/ZX£+I£> B+

S(£)) (1 S(E))

Complete the square. The posterior is Gaussian with precision

Apost = ———— X0 Xp + I,
ECEET0)

and mean
-1

1 /
Hpost = Ay - mxg)’-
Multiplying numerator and denominator by (1 — S(£)) gives the stated form:

4 -1 4
Hpost = (X2 Xe + (1= S(ENI) X,y

For unlearned coordinates j € J \ L, independence of parameters implies the posterior equals

the prior, whose mean is zero: E[f7., | M| = 0. O
Corollary 6 (Bayes Estimator as MNLS with Shrinkage). The Bayes estimator can be written
as a shrinkage transformation of the minimum-norm least-squares (MNLS) estimator:

-1

+ A
E[fe | Mc]=| (1= S(0) - (XpXe) +1c| B,
—_—
Shrinkage Factor

where BMNLS = (X1 X,)* X,y denotes the MNLS estimator and (-)* is the Moore-Penrose pseu-

doinverse.
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Proof. From Proposition ??, the posterior mean is
E[Be | Me] = (X;Xe + (1= S(O)e) " X.y.
Factor out X} X, using the identity
(A+AD7'A=(QAT+1) " AYA,

valid for any symmetric A with pseudoinverse A*. Applying this to A = XX, and 1 =
1—S(L) gives

E[fe | Mc] = ((1-S(ENXGX)T + 1) (XpXe) XLy.

Recognizing the last term as the MNLS estimator completes the proof. [

Corollary 3 (Ridge Regression). The posterior mean coincides with a ridge regression estimator

with optimal penalty

2(L) = 1_—:'“)

Equivalently,

Elfe | Mc] = ndge(}t)‘a pRon

Proof. Define the ridge estimator with sample-size normalization as
31%(A) € arg min {%Hy _ Xbl+ )L||b||2} .
The first-order condition is
% ((Xehb—y)+Ab=0 = (X,X;+nAl)b=Xy.

Hence
e (2) = (X4Xp +nA ) X,y

From Proposition ??,

E[f: | M.] = (X X, +(1- 5(£))I£) Xy

Setting nd = 1 — S(L),ie. A = 1 (L) = (1 — S(L))/n, the two expressions coincide, proving
the claim. [l

Lemma 7. Assume T C L. The value of a dataset of type (L, T ) is the variance of the optimal

predictor
(L, T) = Var[f"(D,r)] = Z s]Var ﬁJ|M£]]

JjeT
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Proof. By Lemma 1, the optimal predictor is

fDer)=Ely | Derl= ) xE[B | Mc],
JET
where we used 7 C L. Under squared loss, the value of information equals the reduction in

Bayes risk, which by the law of total variance is

o(£,T) = Var (E[y | Dz.r]) = Var (f*(De.r)).

Let m; = E[f; | M.]. Instances are independent across i, hence x7 is independent of M,;
covariates are mutually independent with E[x;] = 0 and Var(x;) = s;. Using these facts and
E[m;] = E[E[S; | M¢]] = E[S;] = 0 (zero-mean prior), we obtain

Var(f*) = Var(Z xjmj> = Z Var(x;m;) = Z ]E[x]?] ]E[m?] = Z s; Var(m;),

JjeT JjeT JjeT JjeT
where cross terms vanish because x; and x; are independent with mean zero for j # k, and

because (x;) is independent of (m;). Substituting m; = E[f; | M,] yields the claimed expres-

sion. ]

Proposition 10 (Variance of Bayes Estimator). Using s; > 0, the posterior mean satisfies

0, jeJ\NL, -

. o (L
Var(]E[,Bj|M£]) = )Ll*([l) +O< %+%>, jecr, where A*(L) = m_—
1+

Sj

Proof. If j ¢ L, the parameter is never updated so the posterior mean is a.s. zero and the
variance is 0.
For j € L, let ¥,,4(X,) denote the posterior covariance of f, conditional on X,. With

Gaussian prior N (0, I) and noise variance o?(L), the standard formula gives
S (Xe) = (I+074L) - X4X,) ' = 02(£)<02(£)I + ngﬁ)_l.
By the law of total variance and Var(f;) = 1,
Var(E[8; | Mc]) = 1 - E[Zp0a(Xe);] -

Write Sp(n) = %XEXg, S0

Z:post(){ﬁ) = 0-2’(1[:) <.§£ + 0'2’(1[:) 'I>_ .
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Let Sp = diag(s;)jec and E;(n) = Sr(n) — S;. Define

2(p 2
(L) st£+0()
n n

A=S, + I.

Since the smallest eigenvalue of S, + @ -1 is at least sy, > 0, Zpot(X,) is invertible and we

can use the resolvent identity in Horn and Johnson (2013) Section 5.8:
A'-B'=A"(B-AB'=-A"E:B\.

Therefore
(L)

L) 1 ML)
n n

Zpost(X[i) = A71 = (A71 - Bil)'

Taking the (j, j) entry and using |(-);;| < | - |op and the triangle inequality,

a4(L) (B, < a¥(L) A — B, < o2(L)

Zpost()(ﬁ)jj - n n n

”14_1 ||op "B_1 "op ”EE ||0p .

The operator norm |A|,, of a matrix A is the largest singular value of A and measures the
maximum action A can have on any vector. Now A,;,(A) > A*(L£) > 0 because S, is positive

semi-definite, so

a’(L), .- . _
" A op = A (L) [A op < 1,
and [B™"[op < 1/Smin. Hence
o¥(L) 1
Spost(Xe)jj — T(B Djj| € — 1Ec(m)lop.

Taking expectations and using the standard bound on the sample variance-covariance matrix
in Vershynin (2018) Theorem 4.7.1,

Ewdw@=o<l§+fo.

n
Therefore,

n n

Since B! is diagonal with (B™");; = 1/(s; + A*(L)),

o (L), . AL _ S;
B =@~ S
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Therefore

Var(E[8; | Mc]) =1 - E[Zpe(Xe);] = #J(E) +0 < % * |£n|>

which is 0(1) whenever |L| = o(n). O]

Proposition 7 (Returns to learning covariates). Fix t € (0,1] and let s : [0,1] — R, be

continuously differentiable with s nonincreasing. Define S(£) = /f s(u) du, the ridge-variance

0

kernel W W 2 s(u)
ridge( .. — s\u — st - —S u
VR E T T T Grsr T Gt s
and the penalty
PO, P T O R P (O
n n n
Let ,
V(t,A) E/ s(u) v (u; ) du.
0
Then
t .
Vi(t, 2*(n, ) = / s() 07 (s M) A5, O du. > 0,
0
t . .
Va2 0) = [ s(u) (554 A 2,0+ 05 1) [, OF )
0
Moreover, )
. . , 2 5(¢)
nlLr(I)}r Vrt’t’(t’/1 (n’ f)) >0 &= —s (f) < 1— S(f),
and

lim V[{(t, /1*(”, f)) =0".

Consequently, for each ¢ there exists a (possibly infinite) threshold n(f) € (0,o] such that
Veul(t, A*(n, £)) > 0 for n < n(f), Vy(t, A*(n, £)) < 0 for n > a(f), and

Ve(t, A" (A(2), £)) = 0.
Proof. Step 1. Sign of V,. By definition,
t .
Vit A7) = / s(u) 07 (s A7) A% .
0

For all u, vﬁidge(u; A*) = —=s(u)/(A* + s(u))* < 0 and A} = —s(£)/n < 0, hence the integrand is

nonnegative and V; > 0.
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Step 2. Decomposition of Vy,. Differentiating once more,

Vit )= [ s (0 A 5 ) ) d
0

with vndge( ;A%) = 2s(uw)/(A* + s(w))®* > 0. Since s is nonincreasing, s’(£) < 0, so A}, =
—s/(£)/n > 0 and v;** < 0, making the first term weakly negative (‘LLN”), while the second
term is strictly positive (“HPE”).

Step 3. Small-n asymptotics and the positivity condition. Using A* = (1 — S(¢))/n and the

identities above,

o S [t s(u)y? 23(£’)2 s(u)?
Vet 4 == / G+ s@y * / G+ s@y *

As n — 0%, we have 1* — oo, so

[ G sy =gy [ s o

s(u)2 1 ' 2 -3
d A)7).
/ O + s(u)y? S(u))3 BEODE /o S(uy du+o(497)
Substituting A* = (1 — S(¢))/n and collecting the O(n) terms yields

Vit A*(n, ) = (z S0 + /() (1 — S({’))) / t s(w)* du + o(n).

n
(1-35(0) 0
Because fot s(u)®*du > 0 and (1 — S(¢)) > 0, the leading term is positive iff

2 s(0)?
1-S(0)

25(*+5(H(1-S(0))>0 <= -5 <

Step 4. Large-n asymptotics. Asn — co, A* — 0. Then vf{dge(u A*) —» —1/s(u) and v“dge(u A1) —
2/s(u)?. Since A}, = —s'(£)/n and (4;)* = s(£)*/n?,

g n) ) ()
_Y®, L0
n n2

Since s’(¢) < 0, this shows V(t, A*(n, £)) > 0.

Step 5. Existence of a threshold. By Step 3, for n small enough the sign is determined by the
condition in the statement; when it holds, V,, > 0 for sufficiently small n. By Step 4, for n
large V,; < 0 and tends to 0~. Continuity in n (from dominated convergence) then yields a
threshold 7n(¢) € (0, co] with the stated sign pattern and V,,(¢, 1*(n(¢), £)) = 0. O
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Remark 1 (On monotonicity of the threshold). It is convenient to rewrite the zero-curvature
condition as ,
. / s(u) v;ifge(u; A)du
A o —9E
(A2 t id o
t / s(w) vy *(u; A") du
0
where the weights are w(u) o s(u) s(u)/(A* + s(u))? on [0,t]. Using A; = —s(£)/n and A}, =
—s'()/n, the left-hand side equals (—s'(£)) n/s(£)>. Thus at the threshold,

1
A + s(u)] ’

(0 .
W n(t’) = ZEW[

1-5(9)

A*(a(0), 0) = 0

1
A (Ae), £) + s(u)] ’
The map £ — (—s'(£))/s(£)? is nondecreasing whenever s is log-concave (indeed d[—s'/s*]/dt =
(2(s")* = 5"s)/s> > 0 under s”’s — (s')* < 0). The right-hand side is decreasing in A* and hence
increasing in n(f) and in £ (via 1 — S(¢)). Therefore, the comparative statics of n(f) depend on the
relative strength of these opposing forces and, in general, need not be monotone without further
restrictions beyond log-concavity. A sufficient condition ensuring that n({f) is nonincreasing is
that the increase of (—s'(£))/s(£)* with £ dominates the induced increase in the weighted average
on the right-hand side; this holds, for example, when s is log-concave and t is small enough that

s(u) varies little over [0, t].

Proposition 8 (Complementarity/Substitutability of learning breadth and observations). Fix

t € (0,1]. Let s : [0,1] = R, be continuously differentiable and nonincreasing, and set

S(p) = / "Wdu  rmo='" :([).
Define
ridges 1\ _ s(u) N s(u) N 2 s(u)
A = T Y=y )= Ty
and

V(t,A) = /t s(u) v (u; ) du.

Then the cross-partial of the value with respect to learning breadth ¢ and sample size n equals

Vin(t, A*(n, £)) = / t S(u)<va(u; A% (1, 0) + v3(us A7) 22, ) X, f)) du,

0

with R o
S
Ay =——=, A= ——, A, = —=.
t n n n tn n2
In particular,

lirgl+ Ven(t, A*(n, £)) > 0, lim Vg, (t,A*(n, £)) = 0.
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Hence there exists a unique A > 0 solving

Es(u)? (A = s(u)) _
| Gy =
and the threshold 1—S(0)
v (D) = —

satisfies Vi (£, A*(n, £)) > 0 iff n < ny, () and Vi, (¢, 1*(n,£)) < 0 iff n > ny, (£). Moreover

ny,, (£) is strictly decreasing in {.

Proof. Step 1. Cross-partial formula and factorization. Differentiate V(t, A*(n, ¢£)) first in £ then
in n:

t
Vo(t, A7) = / s(u)(m;ﬁma;a;) du.
0

Using A; = —s(£)/n, Az = —=A*/n, and A}, = s(£)/n?, pull out the common factor s(¢)/n* and

combine terms inside the integral:
* s([) ! * * *
Va(t. 2 =22 | s(w) (a1 + 20, 1) ) d
ne Jo

With v; = —s(u)/(A* + s(u))* and v, = 2s(u)/(A* + s(u))?,

s(u)

vy + Ao = m(ﬂ* - s(u))
Therefore
Venlt, 2*(n, £)) = %) FQ*(n,0),  FQ) = /0 s(lg 83@;;3”)) du. (1)

Step 2. Limitsasn — 0" and n — c0. Asn — 0", 1* = (1 — S(¢))/n — oo. Then

o [Fsw)? X = s(u) 1 ! ) o
F(A )—/0 Oy 1+ s(u)//l*)3 du = ) /o s(u)® du + o((A9)™%).

Using A* = (1 — S(£))/n in (1) yields

lim Vo (£, 4°(n, ) = % /0 ts(u)z du > 0,

provided s(f) > 0 and s # 0 on [0, t] (true under our standing assumptions).

As n — oo, I* - 0. Then

F(A") = — /Ot ldu+ O(A") =—-t+ O(1"),
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so from (1)

n2 n—oo

Ven(t, A" (n, £)) = _ts({’) + o(%) — 0.

Step 3. Existence and uniqueness of a A > 0 with F(1) = 0. The function F is continuous on

(0, 00) by dominated convergence. Moreover
t
F(O):—/ ldu=-t<0, }imF(A):OJr,
0 —>00

and the large-A expansion gives F(A) = L/A* — ;/A* + o(A7*) > 0 for A large, where I, =
fot s(u)* du. Thus there exists at least one A > 0 with F(1) = 0.

To see uniqueness, note that

o [ s @s(u) = 2)
Fov=2 [ S

so F/(0) = 2 [Ot ﬁ du > 0, while for A large enough F’(1) < 0. Hence F is increasing on a
neighborhood of 0, eventually decreasing for large A, and lim,_,., F(A) = 0*. Since F(0) < 0,

F can cross the zero level at most once; therefore the zero is unique.

Step 4. Threshold and its monotonicity in £. By (1), sign V,,(t, A*(n, £)) = sign F(A*(n, £))
because s(£)/n? > 0. With the unique A from Step 3, define
1—5(¢)

ny, (£) = S

Then V,, > 0iff A*(n, £) > 1iff n < fiy, (£); and V,, < 0 iff n > iy, (£). Since S(¢) is increasing

in £, 1 — S(¢) is decreasing, so ny, (¢) is strictly decreasing in ¢. O

Corollary 4 (Complementarity across datasets with fixed n). Fix n and t. For ¢,, ¢, > 0 with
) + ¢, < ¢, define the supermodularity gap

A([la [2) = V(n’ {)1 + [2, t) - V(n’ [1’ t) - V(ns 525 t) > 0 < n S ﬂVe{(f)'

so datasets are complements if and only if observations are scarce. In particular, if s(u) = 1 for

all u, datasets are always complements.

Proof. Apply the mean value theorem twice to the function £ +— V(n, £, t) to obtain A(¢y, ;) =
%V[{(t, X*(n, £))(£,4,) for some £ € (0, £, + £,), so the sign of A equals the sign of V. Propo-
sition 7 gives the expression and its comparative statics in n and ¢, yielding the threshold

characterization and the constant-s(u) special case. O
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Corollary 5 (Substitutability across datasets with fixed ¢). Fix ¢ and t. For ny,n, > 0, define
the supermodularity gap

An(nb n2) = V(n'l + noy, [; t) - V(nls [s t) - V(nz’ fa t) < O:

so the datasets are substitutes.

Proof. Apply the mean value theorem twice to ¢(n) = V(n, ¢, t): for some n € (0,n; + ny),
A, (ny,ny) = % Van(t, A*(#1, €)) nyn,. Proposition 6 establishes V,,,(t, A*(n, £)) < 0 for all n > 0
(diminishing returns to observations). Therefore A,(n;, n,) < 0, proving strict substitutability.

O

Proposition 9 (Learning Cost). For any learning level L > the required number of co-

_n_
1-5(t)°
variates is

(L) =s"(1-12)>1,

and the associated cost function is

N ) yn
L) = yt(L), L)= ———.
R )
Proof. The constraint L < L(f) is binding at the minimum cost solution, so L = L(¢) = #({,)
Solving for ¢ gives (L) = S~'(1 — n/L). Multiplying by unit cost y yields ¢(L). Differentiation
gives ¢(L). H

Proposition 10 (Cost of Information). For any information value V > 0, the implied learning
demand is L(V) = V~1(V),and the information cost is C(V) = ¢(L(V)). Average and marginal
costs satisfy

(V) L))
AC(V) = ==, MC(V)——V(L(V)).

Proof. By the implicit function theorem, the learning level consistent with V is uniquely de-

fined as L(V) = V~!(V). Substitution into the learning cost function gives C(V). Average and

marginal cost formulas follow by direct division and the chain rule. []

Proposition 11 (Natural monopoly condition). At anyV,
AC(V) > MC(V) <= ey(L(V)) 2 e (L(V)).

Proof. Using C(V) = c(L(V)),

(V) o <@V

AC(V) > MC(V) 7 2 V'

Proposition 12 (Profit Maximization). At the optimum V*, the market is a natural monopoly

if and only if
AC(V)>MC(V") <= Mg< M= mVinAC(V).
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It follows from the natural monopoly condition in Proposition 5 evaluated at the firm’s

optimal choice V* characterized in Proposition ??. [

Lemma 8 (Learning required to reach a fixed value). For any fixed V € (0,1) and feasible
(n, t), the least learning depth that attains V is the unique L(V, t) that solves V(L,t) = V. It

satisfies
oL, 9,V(L,1t) oL

— = -/ <0, -
atlv o, V(L, 1) onlv
[Pointwise cost shifts] For any fixed L and n,

dc ) yn Xy = — ¥V
- T i) 0. plbm = Ls(@L) >

where {L) = S7'(1 — n/L).
Proposition 11 (Cost at a given value V). Fix V and suppose the feasibility bound does not

bind at L(V, t), i.e. L(V, t) > L™"(t). Then

oC ac aC ac oL
—WVin,t) = —(L(V,t);n) <0, —(V5n,t) = —(L(V,t); _‘ <
8n( n ) 8n(( :n) 8t( 1) aL(( ) otlv

Hence both average and marginal cost, AC(V) = C(V)/V and MC(V) = ¢(L)/V(L), shift

weakly downward in n and t pointwise in V.

Proposition 13 (Effect of n and t on the natural-monopoly threshold). Let M(n, t) = minys, AC(V;n, t),
and assume the argmin V2(n, t) is interior (equivalently AC = MC at VA€). Then

oM 1 9C [ ac oM 1 9C [ ac
— = — —(V*nt) <0, — = — —(V*nt) <o
on VAC 9n ot VAC ot

Moreover, the inequality is strict whenever s(t) v"™*¢(t, 1/L(VA€, 1)) > 0.

Proof. By the envelope theorem for a value that minimizes ¢(V) = C(V)/V, dM/dé =
0¢/3&|y_yac = (1/VAC)aC/d¢ for any parameter ¢ € {n,t}. Combine with the previous

proposition. []

Proposition 14 (Data List Merger). Suppose two brokers sell lists that only increase n with ¢
fixed. Then V,, < 0 implies the datasets are strict substitutes: for all n;,n, > 0, V(n;+ny, £, t) —
V(ny, ¢, t) — V(ny, £,t) < 0. Therefore competition between list brokers lowers prices relative to

integrated monopoly. A merger of list brokers raises price and reduces adoption.

Proof. A buyer who purchases a set S C {1, 2} of brokers obtains value 0Vs where I define

incremental values relative to the null:
‘/i = V(n,-, f, t), V12 = V(n1 + noy, [, t),
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I have Vi, — V; — V, < 0 since V,, < 0, so the incremental value of extra observations is
diminishing and datasets that differ only in n are strict substitutes. Price competition between
substitutable lists pushes prices down; a merger softens this competition and raises the bundle
price toward the monopoly optimum PM = 0 V.

Therefore, mergers between list brokers who primarily expand n (with similar ¢) are pre-

sumptively harmful: higher prices, lower adoption, and lower consumer surplus. []

Proposition 15 (Data Append Merger). Under Assumption ??, a merger between two data

append brokers can be either anticompetitive or procompetitive:

« If n < ny, (), the data appends are complements. Hence, the merger eliminates double

marginalization so it is procompetitive.

« If n > ny, (), the datasets are substitutes. Hence, the merger weakly increases price and

strictly lowers adoption, so it is anticompetitive.

Given ny,(f) is decreasing in ¢, if data are scarce, it is more likely the merger is procompetitive.

In the special case of equal covariates, the merger is always procompetitive.

Proof. A buyer who purchases a set S C {1, 2} of brokers obtains value 0Vs where I define

incremental values relative to the null:
Vi=V(n, ,t), Vig = V(n, t1+6,, 1),
and the supermodularity (synergy) term
A=V, =V, =V, = A, t,).

The buyer purchases the pair of datasets after merger iff

0> p1t P2
Viz

so demand is D(p;+p;) =1 — G((p1+p2)/V12). Broker i solves
max p; D(pi+p.).
pi=0
Let z = (p1+p2)/ Vi2. The FOC for a symmetric equilibrium p; = p, = p is

1-6(2) = o8 = ; 82)

Define H(0) = 0g(6)/[1 — G(0)]. Under the thin-tail Assumption 1, H is increasing, so the

pricing problem has a unique solution. The symmetric duopoly condition is
H(z") =2.
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An integrated monopolist selling the bundle chooses P with FOC

P P P pM
1—G<—> :—g<—>, so H(M) =1, M=,
VIZ V12 VIZ VIZ

Since H is increasing, H(z"”) = 2 > 1 = H(z") implies z” > z" and
plD +p2D = ZDV12 > ZMV12 = PM

Noncooperative duopoly exhibits double marginalization with complementary appends: the
total price is higher, adoption is lower, and static welfare is below the merged outcome. If
single-dataset purchases yield some value V; > 0, algebra adds regions, but the same qualita-
tive force holds when A > 0. O

Proposition 16 (Welfare comparison). Assumption 3, exclusivity is never welfare-optimal: total

downstream profits are strictly higher under nonexclusive access.

Proof. Under nonexclusive access both firms enter and invest in P, yielding
WY =2(aV(R,P}) — cp).
Under exclusivity, only the incumbent invests in P, so
WX = (a+ y)V(R, P}) — cp.
Since cp € (A(P|®), A(P|R)], it follows that

whN > w¥X,

B Extensions

B.1 Scope as Model Complexity and LLMs

Assume all ¢ covariates are observed instead, with no restriction on . The firm faces con-
straints on the number of covariates it can use in the learning and targeting steps. The scope
of learning, ¢, is the number of principal components the firm can use in learning. The scope
of targeting, t, is the number of principal components that can be used in targeting. This
interpretation captures the model complexity.

To reduce the dimensionality whilst extracting the maximum information in the con-

straints, Jolliffe (2002) shows that the optimal procedure is Principal Component Analysis
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(PCA). Let the eigendecomposition of the variance/covariance matrix be
> = USU/, S = diag(s; > -+ > s; > 0), U orthonormal.
Define principal components z' = x'U. Then
Z' ~ N(0,A), zj are uncorrelated with variances s;.

[Application to Large Language Models (LLMs)] Although LLMs are trained with cross-
entropy loss, near a trained solution their behavior can be well approximated by a linear
predictor under squared loss in a suitable linear transformation of the covariates (MacKay
(1992); Jacot, Gabriel, and Hongler (2018)). In this local view, our primitives map directly: the
scale of learning n corresponds to the amount of training information (e.g., the number of
training observations/tokens), the scope of learning ¢ captures the effective number of infor-
mative directions used at the learning stage, and the scope of targeting t captures the amount
of information observed at the targeting stage for specific instances. Under this mapping,
comparative statics in (n, ¢, t) align with empirical scaling laws for language models (Kaplan
et al. (2020)). Supplying richer information at prediction time corresponds to increasing ¢ via
retrieval-augmented inputs (P. Lewis et al. (2020)), with benefits contingent on relevance and

known long-context effects (Liu et al. (2023)).

B.2 Double Descent

If covariates in L are highly informative, the Bayes Estimator is equivalent to the ridgeless

estimator and the MNLS estimator

Jim BB | Mc] = lim B(2) = BN

In general, sophisticated algorithms are needed to compute or approximate the posterior
mean E [B, | M.]. Instead, the MNLS can be obtained by a simple machine learning algorithm,
gradient descent. This equivalence therefore shows that once the data is sufficiently rich, even
such a rudimentary algorithm approximates the Bayes estimator arbitrarily well. When data
is linear-separabler, prediction accuracy is driven almost entirely by data, not by algorithms.

The result also sheds light on a central puzzle in modern statistics and machine learning:
the double descent phenomenon first discusssed in Belkin et al. (2019). Classical statistics tells
us the prediction error of gradient descent is U-shaped in the number of parameters |L|: with
too few parameters the model underfits, while beyond the optimum |L|* € (0, n) prediction
error increases due to overfitting, as residual variation ¢ is mistakenly attributed to .. How-
ever, empirical work shows that expanding £ further can reduce the error again—the second

descent in the error. Double descent is not yet fully understood: the dominant explanations
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rely on intricate properties of high-dimensional geometry (see Hastie et al. (2020)). Our model
offers a simpler account that also applies to low-dimensions. As the learning set £ expands,
the residual variance 1 — S(L) decreases, and the shrinkage operator in the Bayes estimator
vanishes. When S(L£) = 1, the Bayes estimator is arbitrarily close to the MNLS even in finite

samples, so gradient descent is approximately optimal.

B.3 Connection with Shannon’s Information Theory

Let a real-valued additive white Gaussian residual variance (AWGN) channel be given by
y:W+Z, Z"’N(0,0’z),

with an input power conslearnt E[w?] < P. Classical results due to Shannon (1948) show that

the mutual information between w and y is*

1 p
I(w;y) = 2 log, (1 + ;) nats. (R.1)

If the channel is decomposed into independent “frequency” slices indexed by j € T that
each carry an SNR of
S .
SNR; = )L_i

then (R.1) adds up across slices by orthogonality. The total mutual information revealed by a

learning sample of strength t is therefore?

L) = % Y log, (1 + As—f) . R.2)

JjET

Equation (R.2) is exactly the functional that appears in our model. Thus the economic

value function I study,

U(t):Z tAj

GFlHed
equals
_, (A @) .
(L, T)=2 (W —Ir (A (ﬁ))> ,

linking our “value of accuracy” directly to the canonical Shannon measure of information.

Two substantive insights follow:

1. Capacity-driven diminishing returns. Because I”’(t) < 0 by Shannon’s law, marginal

economic value v’(t) = 2I’(¢+) must also fall. No additional curvature assumption is

21See C. E. Shannon, Bell System Technical Journal, 1948, eq. (26); or T. M. Cover and J. A. Thomas, Elements
of Information Theory, 2nd ed., §9.1.

22This integral form follows immediately from Gallager, Information Theory and Reliable Communication, 1968,
Ch. 8, where parallel Gaussian sub-channels are treated.
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needed; the concavity of v is pinned down by fundamental information limits. In pol-
icy terms, data economies of scale saturate exactly when further capacity gains are

information-theoretically expensive.

Table 2: Types of predictions and policy implications

Type of prediction Data abundant? Tails thick? Monopoly Remedy
Genomic risk prediction (health) No Yes Access regulation
Clinical decision support for rare diseases No Yes Access regulation
Credit scoring / SME default probability No Yes Access regulation
Fraud / AML detection No Yes Access regulation
Industrial predictive maintenance (OEM IoT) No Yes Access regulation
Smart grid anomaly detection (critical infra) No Yes Access regulation
Autonomous driving safety edge cases Yes Yes Hybrid
Weather nowcasting for extremes Yes Yes Hybrid
E-commerce CTR / product recommendation Yes No Competition policy
Targeted Ads Yes No Competition policy
Media streaming recommendation Yes No Competition policy
Web search ranking Yes No Competition policy
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